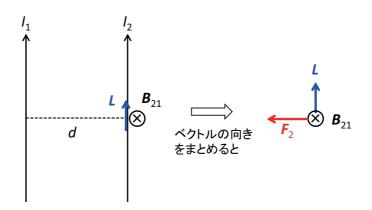
(アンペアのカー平行電流間の磁気力)ampere-force-parallel-current-qa140728A.tex

十分に長い直線状の導線に強さ I_1 , I_2 の電流が間隔 d で 平行に 流れているときの磁気力 (= アンペアの力)を考える.

- 1. 両方の導線の導線の長さ L 部分に働く力の大きさと向きを理由をつけて述べよ. ただし、強さ I の直線状に流れている電流から距離 d だけ離れた点における磁場 (磁 東密度)の強さ B は、真空の透磁率を μ_0 として、 $B = \mu_0 I/(2\pi d)$ で与えられる.
- 2. 具体的に, d=0.10 m, $I_1=I_2=1.0\times 10^2$ A, 長さ L=10.0 m の導線間に働く力の大きさ F を求めよ. ただし, $\mu_0=4\pi\times 10^{-7}$ N/A² とする.

(解答例)


1. (a) まず、電流 I_1 がつくる磁場を通じた磁気力(=アンペアの力)を考える.電流 I_1 が電流 I_2 の位置につくる磁場 \boldsymbol{B}_{21} の強さは

$$B_{21} = \frac{\mu_0 I_1}{2\pi d} \tag{1}$$

である. 従って. 電流 I_2 の導線の長さ L で電流 I_2 の向きのベクトル部分 (L) に作用するアンペアの力 F_2 は

$$\boldsymbol{F}_2 = I_2 \boldsymbol{L} \times \boldsymbol{B}_{21} \tag{2}$$

である.

この力 \mathbf{F}_2 の大きさは $F_2 = I_2 L B_{21} = \mu_0 I_1 I_2 L/(2\pi d)$ である. (電流の強さ I_1 , I_2 の入れ替えに対して対称な表現式になっていることに注意する.) ベクトル積 (外積) の性質から, <u>この力 \mathbf{F}_2 の向きはベクトル \mathbf{L} からベクトル \mathbf{B}_{21} の向きに右ねじを回したとき,右ねじの進む向き,すなわち,電流 I_1 側に向かう向き である.</u>

(b) 次に,電流 I_2 がつくる磁場を通じた磁気力(= アンペアの力)を考える.電流 I_2 が電流 I_1 の位置につくる磁場 ${\bf B}_{12}$ の強さは

$$B_{12} = \frac{\mu_0 I_2}{2\pi d} \tag{3}$$

である. 従って. 電流 I_1 の導線の長さ L で電流 I_1 の向きのベクトル部分 (L) に作用するアンペアの力 F_1 は

$$\boldsymbol{F}_1 = I_1 \boldsymbol{L} \times \boldsymbol{B}_{12} \tag{4}$$

である. この力 F_1 の大きさは $F_1 = I_1 L B_{12} = \mu_0 I_2 I_1 L/(2\pi d)$ である. (電流の強さ I_1 , I_2 の入れ替えに対して対称な表現式になっていることに注意する.) ベクトル積 (外積) の性質から, この力 F_1 の向きはベクトル L からベクトル B_{12} の向きに右ねじを回したとき,右ねじの進む向き,すなわち電流 I_2 側に向かう向き である.

すなわち、同じ大きさ $F=\mu_0I_1I_2L/(2\pi d)$ の引力が働くことになる.

2. 題意より

$$\mathbf{F} = \frac{\mu_0 I_1 I_2 L}{2\pi d}$$

$$= \frac{(4\pi \times 10^{-7} \text{ N/A}^2)(10 \text{ A})^2 \times 10 \text{ m}}{2\pi \times 0.1 \text{ m}}$$

$$= 0.2 \text{ N}.$$
(5)