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Introducing a new vertex function, Ẑ(E), of an energy variable E, we derive a new equation for the effective
interaction. The equation is obtained by replacing the Q̂ box in the Krenciglowa-Kuo (KK) method with Ẑ(E).
This new approach can be viewed as an extension of the KK method. We show that this equation can be
solved both in iterative and noniterative ways. We observe that the iteration procedure with Ẑ(E) brings about
fast convergence compared to the usual KK method. It is shown that, as in the KK approach, the procedure of
calculating the effective interaction can be reduced to determining the true eigenvalues of the original Hamiltonian
H and they can be obtained as the positions of intersections of graphs generated from Ẑ(E). We find that this
graphical method yields always precise results and reproduces any of the true eigenvalues of H . The calculation
in the present approach can be made regardless of overlaps with the model space and energy differences between
unperturbed energies and the eigenvalues of H . We find also that Ẑ(E) is a well-behaved function of E and has
no singularity. These characteristics of the present approach ensure stability in actual calculations and would be
helpful to resolve some difficulties due to the presence of poles in the Q̂ box. Performing test calculations, we
verify numerically theoretical predictions made in the present approach.
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I. INTRODUCTION

In nuclear, atomic, and chemical physics, it is often useful
to introduce an effective interaction acting in a chosen model
space (P space) of tractable dimension. In nuclear physics,
much effort has been made with regard to both formal
theories and their applications [1–8]. Recently, the effective
interaction method has been applied to new fields of many-
body physics, such as quantum dots [9,10] and many-boson
systems [11].

Among many approaches, we here direct our attention
to the Krenciglowa-Kuo (KK) [12,13] and the Lee-Suzuki
(LS) [14,15] methods. These two methods are constructed in
terms of the so-called Q̂ box as a building block of formulation.
The KK approach has a very simple structure and the effective
interaction is obtained in an iterative way. If the iteration
converges, in almost all numerical calculations, eigenvalues
are given for the states which have the largest overlaps with
the chosen model space. On the other hand, the LS method
reproduces eigenvalues for the states which lie closest to the
chosen unperturbed energy. Originally the LS method had
been presented to resolve the difficulty of divergence in the
perturbation expansion. The LS method is rather complicated
in structure and higher derivatives of the Q̂ box with respect
to starting energy are necessary if one wishes to obtain more
accurate solutions.

Both of the two theories yield only certain of the true
eigenvalues of the original Hamiltonian. This restriction is
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not desirable. In a formal point of view, the Q̂ box itself
contains information regarding all of the true eigenvalues.
For a given model space of dimension d, there would be a
method of reproducing any d eigenvalues among all the true
eigenvalues.

In many cases where the effective interaction theories have
been applied an iteration or a recursion method has often
been employed. In general, the convergence in such a method
depends strongly on the properties of the eigenstates of the
Hamiltonian H . In actual calculations the information on
the true eigenstates is not given beforehand. Therefore, it is
impossible to control the convergence in the iteration. In many
cases we cannot know whether the iteration is convergent
before starting calculations. Even if the iteration converges,
we do not know which eigenvalues are reproduced in all
of the eigenvalues. Another difficulty encountered in actual
calculations is the pole problem. The Q̂ box itself has poles at
the energies which are the eigenvalues of H in the complement
space (Q space). The presence of poles causes often instability
in numerical calculations.

We shall show that it is indeed possible to resolve these
difficulties by introducing a new vertex function, Ẑ(E), in
place of the Q̂ box by Kuo et al. [12,13]. Preliminary version of
the present work has been reported in Ref. [16]. Very recently
Dong, Kuo, and Holt have followed the present approach and
applied to the actual calculations of the shell-model effective
interactions [17]. These works have shown that the present
method has a possibility of providing a suitable framework
with Ẑ(E) as well as the KK approach.

The organization of the present article is as follows: In
Sec. II we outline the Q̂-box formalism and the KK method.
A new vertex function operator, Ẑ(E), is introduced and some
of its mathematical properties are clarified. The algorithm of
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the calculation procedure is given by applying the secant and
the Newton-Raphson methods. In Sec. III test calculations are
made in order to assess the present approach. We examine
whether the theoretical predictions are verified in an exactly
solvable model. Concluding remarks are given in Sec. IV.

II. FORMULATION

We consider a general quantum system which is described
by a Hamiltonian H . We write an eigenvalue equation with the
eigenvalues {Ek} and the eigenstates {|�k〉} as

H |�k〉 = Ek|�k〉, k = 1, 2, . . . . (1)

The Hamiltonian H is supposed to be composed of the
unperturbed Hamiltonian H0 and the perturbation V , i.e.,
H = H0 + V . We decompose the entire Hilbert space into the
model space (P space) and its complement (Q space) with the
projection operators P and Q, respectively. Basic properties of
the projection operators are P + Q = 1 and PQ = QP = 0.

We here assume that H0 is decoupled between the P and Q
spaces as

H0 = PH0P + QH0Q. (2)

In the present work we consider a case that the P-space states
have a degenerate unperturbed energy E0, i.e.,

PH0P = E0P. (3)

Then the P-space eigenvalue equation is written with the
effective interaction R and the eigenstate |φk〉 as

(E0P + R)|φk〉 = Ek|φk〉, k = 1, 2, . . . , d, (4)

where d is the dimension of the P space. In the above d

eigenvalues Ek’s should agree with d of the true eigenvalues
in Eq. (1). Various solutions for R are possible, and many
theoretical frameworks have been given for obtaining R.
Probably the most widely applied effective interaction is given
by imposing the condition that the model-space eigenstate |φk〉
in Eq. (4) should agree with the P-space component of the true
eigenstate |�k〉 of H , i.e., |φk〉 = P |�k〉. This restriction on
|φk〉 leads to the standard non-Hermitian form of R [18].

A. Solutions for effective interaction in the Q̂-box formalism

Among many approaches to the effective interaction R

we here discuss the KK formalism [12,13]. Originally the
KK method is based on a diagrammatic representation of the
effective interaction, which has been known as the Q̂-box
folded-diagram method originated by Kuo et al. [19].

For obtaining R, one first calculates the vertex function
called the Q̂ box which is defined as the sum of all the
linked and nonfolded diagrams. Next one should add the
folded diagrams, which can be carried out rather simply
by applying the energy-derivative expression of the Q̂ box
[12,19]. Originally the KK approach was proposed to derive
an effective interaction acting among a few valence particles
outside the closed-shell core. However, in the present work,
we consider a general quantum system and wish to reproduce
d total energies of H by introducing an effective interaction.

For this case the KK method can also be applied by defining
the Q̂ box in an operator form as

Q̂(E) ≡ PV P + PV Q
1

E − QHQ
QV P, (5)

which is a function of an energy variable E. Equation (5)
is equivalent to the energy-dependent form of the effective
interaction given by Bloch and Horowitz in the many-body
perturbation theory [20].

With the Q̂ box the effective interaction R can be expanded
into

R = Q̂ + Q̂1Q̂ + Q̂1Q̂1Q̂ + Q̂2Q̂Q̂ + · · · , (6)

where Q̂ ≡ Q̂(E0) and Q̂m ≡ Q̂m(E0) with

Q̂m(E) ≡ 1

m!

dmQ̂(E)

dEm
, m = 1, 2, . . . . (7)

Here E0 is the starting energy or the degenerate unperturbed
energy as given in Eq. (3).

If the series expansion in Eq. (6) converges, R is given in a
formal way by

R =
d∑

k=1

Q̂(Ek)|φk〉〈φ̃k|, (8)

where Ek and |φk〉 are given in Eq. (4), and 〈φ̃k| is the biorthog-
onal state defined through the orthogonality 〈φ̃k|φk′ 〉 = δkk′ .
We here note that, as seen in Eqs. (4) and (8), the derivation
of the effective interaction R is equivalent to determining d

eigenvalues {Ek} and the corresponding P-space eigenstates
{|φk〉}. Using Eqs. (4) and (8), the effective interaction R is
rewritten simply as

R =
d∑

k=1

(Ek − E0)|φk〉〈φ̃k|, (9)

and the model-space eigenvalue equation with the effective
interaction R is expressed as

[E0P + Q̂(Ek)]|φk〉 = Ek|φk〉. (10)

From Eqs. (8) and (10) we understand that R can be given by
calculating the Q̂ box at the true eigenvalues {Ek} of H as
starting energies which are determined self-consistently.

We here show that there is another way of deriving the
effective interaction R. We first note that the Q̂ box is a
function of E and resultantly the eigenvalues of E0P + Q̂(E)
are also functions of E. We write the eigenvalue equations in
the P space for an arbitrary energy E as

[E0P + Q̂(E)]|ψm〉 = Gm(E)|ψm〉,m = 1, 2, . . . , d. (11)

Since the P space is d dimensional, we have d eigenvalues
denoted by {Gm(E); m = 1, 2, . . . , d}, which we label in order
of energy as G1(E) < G2(E) < · · · < Gd (E). It may be clear
from Eqs. (10) and (11) that the eigenvalues {Ek} in Eq. (10)
can be given by solving the following equations

Gm(E) = E, m = 1, 2, . . . , d. (12)

Various mathematical methods have been known to solve such
equations.
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We should note that a set of the equations (12) are
independent of the properties of the eigenstates of H , such as
P-space overlaps or energy spacings. Therefore, in principle,
it is possible to reproduce the true eigenvalues {Ek} of H more
than in the usual KK method based on Eq. (10). However, as
seen in Eq. (5), poles appear in the Q̂ box when E approaches
one of the eigenvalues of QHQ. The poles in Q̂(E) also
induce the poles in Gm(E) in Eq. (11). Such a situation causes
instability in numerically solving Eq. (12) for {Ek} around the
pole positions.

B. Extension of the Krenciglowa-Kuo method

In order to resolve the pole problem we introduce a new
vertex function of an energy variable E, which is a P-space
operator defined in terms of the Q̂ box and its energy derivative
as [16]

Ẑ(E) ≡ 1

1 − Q̂1(E)
[Q̂(E) − Q̂1(E)(E − E0)P ]. (13)

Hereafter we shall refer to Ẑ(E) as the Ẑ box. We note
here that the Ẑ box agrees, at E = E0, with the first-order
recursive solution in the LS method [15]. In a recent article by
Dong, Kuo, and Holt [17] the definition of Ẑ(E) is given in a
more general case with a nondegenerate P-space unperturbed
Hamiltonian PH0P . In this case one should replace E0P

with PH0P . As in Eq. (11) with the Q̂ box, we consider
an eigenvalue problem

[E0P + Ẑ(E)]|ψm〉 = Fm(E)|ψm〉, m = 1, 2, . . . , d, (14)

where {Fm(E); m = 1, 2, . . . , d} are d eigenvalues which are
functions of E. We here label {Fm(E); m = 1, 2, . . . , d} in
order of energy as F1(E) < F2(E) < · · · < Fd (E).

The Ẑ box and the associated functions {Fm(E)} have the
following properties:

(i) Using Eqs. (5), (8), (9), and (13), we have, for the
P-space eigenstates {|φk〉} in Eq. (10),

d∑
k=1

Ẑ(Ek)|φk〉〈φ̃k|

=
d∑

k=1

1

1 − Q̂1(Ek)
[R − Q̂1(Ek)R]|φk〉〈φ̃k| = R.

(15)

The above fact means that, replacing Q̂(E) with Ẑ(E)
in Eq. (8), a new solution for the effective interaction
R can be derived as

REKK ≡
d∑

k=1

Ẑ(Ek)|φk〉〈φ̃k|, (16)

and, equivalently, Eq. (10) with the Q̂ box is replaced
with

[E0P + Ẑ(Ek)]|φk〉 = Ek|φk〉. (17)

From the above relations between two approaches
with Q̂(E) and Ẑ(E) we may call REKK in Eq. (16)
the extended Krenciglowa-Kuo (EKK) solution. In the

same way as in Eq. (12), the true eigenvalues {Ek} can
be given by solving the equations

Fm(E) = E, m = 1, 2, . . . , d. (18)

(ii) Using Eqs. (5), (7), and (13) we can derive a formal
expression for the energy derivative of Ẑ(E) as

dẐ(E)

dE
= 2

1 − Q̂1(E)
Q̂2(E) [Ẑ(E) − (E − E0)P ].

(19)

In the article by Dong et al. [17], the above expression
has also been given for a general case with the nonde-
generate PH0P . If E is one of the true eigenvalues {Ek}
satisfying Eq. (17), we see that the energy derivative of
Ẑ(E) becomes zero at E = Ek , namely

dẐ(E)

dE

∣∣∣∣
E=Ek

|φk〉 = 0, k = 1, 2, . . . , d. (20)

As a result, we have for the energy derivative of Fm(E)

dFm(E)

dE

∣∣∣∣
E=Ek

= 0, k = 1, 2, . . . , d. (21)

These results for the energy derivatives have been
pointed out in a previous article [16].

(iii) We discuss here some problems associated with
the poles of Q̂(E). First we consider the eigen-
value equation for the Q-space Hamiltonian QHQ

written as

QHQ|q〉 = εq |q〉, (22)

where εq and |q〉 are the eigenvalue and the eigenstate,
respectively. It may be clear from Eq. (5) that Q̂(E) has
a pole at E = εq . We define a P-space operator X̂q with
the Q-space eigenstate |q〉 in Eq. (22) as

X̂q ≡ PV |q〉〈q|V P. (23)

We write the eigenvalue equation for X̂q with an
eigenvalue xµ as

X̂q |µ〉 = xµ|µ〉. (24)

From the definition of X̂q in Eq. (23) we see that X̂q

is a Hermitian and positive semidefinite matrix, that
is, X̂q has positive or zero eigenvalues because of the
inequality xµ = |〈µ|V |q〉|2 � 0. We can further prove
that there is only one eigenstate, denoted by |µ0〉, with
a positive eigenvalue and that the eigenvalues of all
the other eigenstates are zero. The only one positive
eigenvalue of Eq. (24) is given by

xµ0 =
d∑

i=1

|〈pi |V |q〉|2, (25)

where {|pi〉; i = 1, 2, . . . , d} are the basis-state vectors
of the P space. The proof is as follows: We consider
a matrix representation of X̂q with the matrix element
(X̂q)ij = 〈pi |V |q〉〈q|V |pj 〉. Then we obtain the trace
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of X̂q as

TrX̂q =
d∑

i=1

|〈pi |V |q〉|2. (26)

We note that the state vector |µ0〉 can be written
explicitly as

|µ0〉 = [〈p1|V |q〉, 〈p2|V |q〉, . . . , 〈pd |V |q〉]T√
N

, (27)

where the symbol T means transpose of (1 × d)
matrix and

√
N is the normalization factor with

N ≡ ∑d
i=1 |〈pi |V |q〉|2. This state |µ0〉 becomes an

eigenstate of X̂q and has a positive eigenvalue as

X̂q |µ0〉 =
(

d∑
i=1

|〈pi |V |q〉|2
)

|µ0〉 = xµ0 |µ0〉. (28)

The eigenvalue xµ0 coincides with the trace of X̂q .
Recalling a well-known theorem on the trace of a square
matrix, we see that the trace of X̂q should be equal to the
sum of the eigenvalues of X̂q . It follows immediately
that all the other eigenvalues except xµ0 become zero.

(iv) Next, we prove that Eq. (17) or (18) has additional
solutions other than the true eigenvalues {Ek}. We note,
in the vicinity of a pole of Q̂(E), where E = εq +
� with a small deviation �, that Q̂(E) in Eq. (5) is
expressed as

Q̂(εq + �) = PV P + X̂q

�
+

∑
q ′ �=q

X̂q ′

εq + � − εq ′
. (29)

Here we have used the definition of X̂q in Eq. (23). The
operations of Q̂(εq + �), Q̂1(εq + �), and Q̂2(εq + �)
on the state |µ0〉 yield in leading order, respectively

Q̂(εq + �)|µ0〉 = xµ0

�
|µ0〉, (30)

Q̂1(εq + �)|µ0〉 = −xµ0

�2
|µ0〉, (31)

Q̂2(εq + �)|µ0〉 = xµ0

�3
|µ0〉. (32)

Using Eq. (13) and the above relations, we obtain at
E = εq + �

[E0 + Ẑ(εq + �)]|µ0〉

=
[
E0 +

(
xµ0

�2

)−1 [
xµ0

�
+ xµ0 (εq + � − E0)

�2

]]

= (εq + 2�)|µ0〉. (33)

Then we have in the limit of E → εq

[E0 + Ẑ(εq)]|µ0〉 = εq |µ0〉. (34)

This fact means that the state |µ0〉 and the energy εq can
be an additional solution to Eq. (17). This also means
that the pole energy εq satisfies Eq. (18).

(v) We further consider the energy derivatives of Ẑ(E) and
Fm(E) at the pole positions. Subtraction of Eq. (34)

from Eq. (33) follows

dẐ(E)

dE

∣∣∣∣
E=εq

|µ0〉 = 2|µ0〉. (35)

We can derive the above result, in another way, by using
Eqs. (19) and (34)

dẐ(E)

dE

∣∣∣∣
E=εq+�

|µ0〉

= 2

1 − Q̂1(εq + �)
Q̂2(εq + �)�|µ0〉. (36)

Then, using Eqs. (31) and (32) and taking the limit of
� → 0, we obtain

dẐ(E)

dE

∣∣∣∣
E=εq

|µ0〉

= lim
�→0

2

(
xµ0

�2

)−1
xµ0

�3
�|µ0〉 = 2|µ0〉. (37)

As a consequence we have

dFm(E)

dE

∣∣∣∣
E=εq

= 2. (38)

This property of the energy derivative of Fm(E) at a
pole position is in marked contrast to that for a true
eigenvalue in Eq. (21). These properties of the energy
derivative of Fm(E) given in Eqs. (21) and (38) can
be used to distinguish the pole energy solutions from
those of the true eigenvalues of H . It is also noted,
from Eqs. (34) and (38), that the function Fm(E) is a
well-behaved function of E and has no singularity even
at the pole energies.

C. Iteration methods for the effective interaction

Iteration methods have been employed quite often for ob-
taining the effective interaction or equivalently for determining
the true eigenvalues of H . In the previous subsections we have
given four basic equations, namely Eqs. (10) and (12) for the
KK and Eqs. (17) and (18) for the EKK methods. In the KK
approach Eqs. (10) and (12) lead, respectively, to the following
iterative equations:[

E0P + Q̂
(
E

(n)
k

)]∣∣φ(n+1)
k

〉 = E
(n+1)
k

∣∣φ(n+1)
k

〉
(39)

and

E(n+1) = Gm(E(n)), m = 1, 2, . . . , d. (40)

In the same way, two iterative equations can be derived from
Eqs. (17) and (18) for the EKK method, respectively, as[

E0P + Ẑ
(
E

(n)
k

)]∣∣φ(n+1)
k

〉 = E
(n+1)
k

∣∣φ(n+1)
k

〉
(41)

and

E(n+1) = Fm(E(n)), m = 1, 2, . . . , d. (42)

The iterative equation (39) has long been used as a standard
method in the KK approach. The convergence condition has
been investigated in many of the theoretical and numerical
studies [12,15,21]. From these studies it has been known that,
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if the iteration converges, the KK approach in Eq. (39) derives
d eigenvalues of the eigenstates of H with the largest P-space
overlaps. However, it has also been known that the iteration in
Eq. (39) does not always converge. Recently Takayanagi [22]
has pointed out an exceptional case that the KK method does
not reproduce states which have the largest P-space overlaps
even if the iteration converges. Although the KK iteration
method has been applied widely and has brought remarkable
results in actual calculations, the rigorous condition of conver-
gence for Eq. (39) has not yet been made clear.

The convergence condition for the iteration in Eq. (40)
requires mathematically that the energy derivative of Gm(E) at
the solution E = Ek should satisfy |dGm(E)/dE|E=Ek

< 1. In
general, this convergence condition is considered to be satisfied
by certain of the true eigenvalues of H . It implies that this
iteration method is restrictive for the purpose of reproducing
the solutions of {Ek} as many as possible.

The iteration in Eq. (41) leads to a new scheme of the
calculations of {Ek} and REKK in Eq. (16). As in the case
of the KK iteration in Eq. (39), the convergence condition
in Eq. (41) is quite complicated and has not yet been made
clear. However, the iteration in Eq. (41) would be applicable in
actual calculations. In the article by Dong et al. [17], they have
employed this iteration scheme to a model problem and actual
calculations of the shell-model effective interaction. They have
concluded that the two iterations in Eq. (39) for the KK and
Eq. (41) for the EKK methods are both suitable and efficient.

Another iterative equations in the EKK method is given in
Eq. (42). The convergence condition for this iteration is given
by |dFm(E)/dE|E=Ek

< 1. It is clear from the property of the
energy derivative of Fm(E) in Eq. (21) that the convergence
condition is satisfied for any of the true eigenvalues {Ek}.
The iteration in Eq. (42) converges surely to one of {Ek}. We
also note that this iteration in Eq. (42) never reaches the pole-
energy solutions due to the property in Eq. (38) of the energy
derivative of Fm(E). We can show that the iteration in Eq. (42)
is equivalent to that in the Newton-Raphson method which is
often used to solve nonlinear equations. The Newton-Raphson
method has been known to derive quadratic convergence, that
is, the number of correct digits is doubled at each step of
iteration. On the contrary, the usual methods, including the
KK and the LS methods, derive single (or linear) convergence.
The iteration in Eq. (42) surely guarantees faster convergence
than the usual iterations given so far.

D. Graphical method for effective interaction with the Ẑ box

We present a new method for solving Eq. (18) derived on
the basis of the Ẑ box and its associated functions {Fm(E)}.
The solutions can be obtained by finding the energies of
the intersections of two graphs, y = Fm(E) and y = E. As
we have already shown, the Ẑ box has no singularities
at the pole positions of the Q̂ box. Thus, {Fm(E)} can
be considered to be well-behaved functions of E. These
characteristics of the functions {Fm(E)} enable us to employ
some of the mathematically well-established methods for
solving nonlinear equations.

The procedure of solving Eq. (18) in the present approach,
which we call the graphical method, is given as follows: We

first draw graphs of y = Fm(E) for m = 1, 2, . . . , d and y =
E. The energies at the intersections of these graphs become the
solutions to Fm(E) = E. Furthermore, the energy derivatives
of {Fm(E)} at the intersections distinguish the pole-energy
solutions {εq} from those of the true eigenvalues {Ek}. As was
proved in the previous subsections, the energy derivatives,
denoted by {F ′

m(E)}, should be F ′
m(E) = 0 for E = Ek and

F ′
m(E) = 2 for E = εq . With these simple regulations for

{F ′
m(E)} we can easily specify the solutions of the true

eigenvalues {Ek}.
We next figure out, from the intersections of the graphs,

roughly estimated solutions for {Fm(E) = E}. Starting with
these approximate solutions, we proceed to make further
precise calculations for the solutions. For this purpose we
employ a combined method of the secant and the Newton-
Raphson methods [23]. The algorithm of this method is as
follows: Let us define a function f (E) as f (E) ≡ E − F (E),
where F (E) is one of the functions {Fm(E)}. The solutions to
Fm(E) = E are obtained as the roots of f (E) = 0. Suppose
that Ea and Eb be two values which bracket one of the roots and
satisfy Ea < Eb and f (Ea)f (Eb) < 0. We suppose also that
f (E) is a monotone function on the interval Ea < E < Eb.
These suppositions on Ea and Eb follow that only one root
exists on the interval Ea < E < Eb. As shown in Fig. 1, we
further determine five points according to

e1 = Ea, (43)

e2 = Eaf (Eb) − Ebf (Ea)

f (Eb) − f (Ea)
, (44)

e3 = Ea − f (Ea)

f ′(Ea)
, (45)

e4 = Eb − f (Eb)

f ′(Eb)
, (46)

e5 = Eb. (47)

f (E)

e
e

1 = E
E

a

e
e E

e
5 = E

b

FIG. 1. Graphical representation of the modified secant method.
L1 is the straight line passing through the points A and B. L2 and L3 are
the tangents to the function f (E) at the points A and B, respectively.
See text for detailed explanation.
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The value e2 in Eq. (44) is the better approximate solution in
the usual secant method. The e3 and e4 are the approximate
values in the Newton-Raphson method. We can easily select
two values, ei and ej , among {e1, e2, . . . , e5} such that they are
neighboring on the E axis and satisfy Ea � ei < ej � Eb and
f (ei)f (ej ) < 0. These conditions mean that one of the roots
exists on the interval ei < E < ej . We then replace Ea and
Eb as Ea = ei and Eb = ej and repeat the procedure again.
This modified secant method derives surely one of the roots on
the interval Ea < E < Eb. We also note that this method will
lead to fast convergence, because we calculate approximate
solutions according to the Newton-Raphson method.

We here wish to emphasize that this method is not an
iteration method. The procedure in this method always derives
a convergent solution to f (E) = 0 on the interval Ea < E <

Eb and never reaches any of the solutions outside the interval.
Therefore, we can always control convergence and select
solutions to be reproduced by selecting starting values Ea and
Eb properly. Only one problem in the present method is how to
choose Ea and Eb. Then the use of the graphs of {y = Fm(E)}
would be helpful. If the graphs are drawn accurately, we can
determine easily these starting energies Ea and Eb.

III. TEST CALCULATIONS

In order to assess the present method we consider a model
problem for which exact results can be obtained easily. The
model we adopt here [21] is a slightly modified version of
the one which was introduced many years ago to study the
intruder state problem [24,25]. The dimensions of the entire
space and the P space are four and two (d = 2), respectively.
The degenerate unperturbed energy is taken to be E0 = 1, and
the interaction V is given with the coupling strength x. The
relevant matrix elements are given by

PH0P =
(

1 0

0 1

)
, PV P =

(
0 5x

5x 25x

)
,

(48)

PV Q =
(−5x 5x

5x −8x

)
,

and

QHQ =
(

3 − 5x x

x 9 − 5x

)
. (49)

We present in Table I the results of the iterative calculations,
based on Eq. (40) for the KK and Eq. (42) for the EKK
methods. The coupling strength x in the model Hamiltonian
is taken to be x = 0.05. Table I shows the results for the
lowest and second-lowest eigenvalues of H . We observe that
the convergence in the EKK method is much faster than that
in the KK method. The EKK iteration reaches convergence to
14 decimal places after three iterations. It is also impressive
that the KK iteration shows linear and steady convergence. As
has already been discussed in Sec. II, the iteration in the EKK
method is essentially equivalent to that in the Newton-Raphson
method which derives quadratic convergence. The calculation
in the EKK method verifies this theoretical prediction that the
number of correct digits is doubled at each iteration.

TABLE I. Convergence of the eigenvalues of the lowest-lying
and second lowest-lying states obtained in the iterations E(n+1) =
Gm(E(n)) and E(n+1) = Fm(E(n)) for the KK and for the EKK methods,
respectively, for the model Hamiltonian with the strength x = 0.05.
Correct digits in the KK and the EKK methods are given for n,
namely the number of iterations. The starting energies (E(1)

1 , E
(1)
2 )

are taken to be (0.0, 0.0). The notation c indicates convergence to
more than 15 decimal places. The exact eigenvalues here are E1 =
0.890 450 485 886 9942 and E2 = 2.215 680 815 009 6040.

n Correct digits (KK) Correct digits (EKK)

1 0.9· · · 0.89· · ·
2 0.88· · · 0.890 450· · ·
3 0.8904· · · 0.890 450 485 886 99· · ·
4 0.890 450· · · c
5 0.890 4504· · · c
6 0.890 450 485· · · c
7 0.890 450 4858· · · c

1 2.2· · · 2.2· · ·
2 2.21· · · 2.215 68· · ·
3 2.215· · · 2.215 680 8150· · ·
4 2.2156· · · c
5 2.215 68· · · c
6 2.215 680· · · c
7 2.215 6808· · · c
8 2.215 680 81· · · c
9 2.215 680 815· · · c

We depict, in Figs. 2 and 3, the dependence of the functions
{Gm(E); m = 1, 2} and {Fm(E); m = 1, 2}, respectively, on
the energy variable E with the coupling strength x = 0.2.
One observes in Fig. 2 that there are two poles in the graphs

2 2 4 6 8 10
E

2

2

4

6

8

10
Gm E

FIG. 2. Dependence of {Gm(E)} on E with x = 0.2. The graphs
of y = G1(E) and y = G2(E) are shown in solid and broken lines,
respectively. The graph of y = E is also shown.
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2 2 4 6 8 10
E

2

2

4

6

8

10
Fm E

FIG. 3. Dependence of {Fm(E)} on E with x = 0.2. The graphs
of y = F1(E) and y = F2(E) are shown in solid and broken lines,
respectively. The graph of y = E is also shown.

of {Gm(E)} associated with the Q̂ box. On the other hand, the
poles disappear in the graphs of {Fm(E)} associated with the
Ẑ box. One sees four intersections of y = Gm(E) and y = E,
and six intersections of y = Fm(E) and y = E for m = 1, 2.

Among the six intersections two of these correspond to the pole
energies, the eigenvalues of QHQ. The energy derivatives
{F ′

m(E)} at the intersections should be zero for the true
eigenvalues of H , which are shown in Eq. (21). On the contrary
the energy derivatives {F ′

m(E)} at the intersections should be
two for the solutions of the pole energies. The number of the
intersections in the graphs of {Gm(E)} and {Fm(E)} is verified
as already predicted in Sec. II. The theoretical predictions
on the energy derivatives {F ′

m(E)} of these functions are also
verified as shown in Fig. 3.

We can obtain, from these graphs in Figs. 2 and 3, much
information on the convergence conditions in some iteration
methods. One observes in Fig. 2 that the energy derivatives
of the first and third low-lying intersections are less than one
and those of the second and fourth are larger than one. From
these observations we may say that the iteration in Eq. (40)
cannot reproduce the second and fourth eigenvalues of H .
On the other hand, one sees from Fig. 3 that there are four
intersections with zero energy derivatives. This means that the
iteration in Eq. (42) in the EKK method always converges to
any of the four true eigenvalues of H .

We made another numerical calculation by using the Ẑ

box and the associated function Fm(E) in the modified secant
method. Tables II, III, and IV show the results for the coupling
strength x = 0.05, 0.1, and 0.2, respectively. The starting
energies Ea and Eb are taken as approximate solutions for the
intersections of the graphs of {y = Fm(E)} and y = E. The
results show that all the solutions to Eq. (18) are reproduced.
They include the four true eigenvalues {E1, . . . , E4} of H

and the two pole energies {εq1 , εq2}. The values of the energy
derivatives {F ′

m(E)} at the solutions were also calculated. As

TABLE II. Convergence of the solutions obtained with the graphical method for the model Hamiltonian with the strength x = 0.05. The Ei

and F ′(Ei) for 1 � i � 4 are the true eigenvalues of H and the energy derivatives of {Fm(E)} at E = Ei , respectively. The εq1 and εq2 are the
solutions for the pole energies. The F ′

m(εq1 ) and F ′
m(εq2 ) are the energy derivatives of {Fm(E)} at E = εq1 and εq2 , respectively. The notation c

indicates convergence to more than six decimal places. The number of repeats in the modified secant method is given by n. The exact values
for the solutions are also given.

n E1 F ′(E1) E2 F ′(E2)

1 0.890 462 <10−6 2.215 995 0.00011
2 0.890 450 <10−6 2.215 681 <10−6

3 c <10−6 c <10−6

Exact 0.890 450 0.0 2.215 681 0.0
(Ea, Eb) (0.8, 0.9) (2.2, 2.3)

n E3 F ′(E3) E4 F ′(E4)
1 2.837 465 0.413 35 8.781 060 0.041 25
2 2.860 730 0.022 42 8.781 706 0.000 14
3 2.862 158 0.000 04 8.781 708 <10−6

4 2.862 161 <10−6 c <10−6

Exact 2.862 161 0.0 8.781 708 0.0
(Ea, Eb) (2.8, 2.9) (8.78, 8.80)

n εq1 F ′(εq1 ) εq2 F ′(εq2 )
1 2.750 350 1.988 29 8.751 088 1.957 24
2 2.749 587 1.999 95 8.750 417 1.999 99
3 2.749 583 2.000 00 c 2.000 00
Exact 2.749 583 2.0 8.750 417 2.0
(Ea, Eb) (2.70, 2.75) (8.70, 8.77)
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TABLE III. Convergence of the solutions obtained with the graphical method for the model Hamiltonian with the strength x = 0.1.a

n E1 F ′(E1) E2 F ′(E2)

1 0.648 389 0.000 02 2.552 215 0.046 47
2 0.648 250 <10−6 2.553 840 0.000 16
3 c <10−6 2.553 845 <10−6

Exact 0.648 250 0.0 2.553 845 0.0
(Ea,Eb) (0.6, 0.7) (2.55, 2.65)

n E3 F ′(E3) E4 F ′(E4)
1 3.649 852 0.000 05 8.647 500 0.003 92
2 3.650 111 <10−6 8.647 794 <10−6

3 c <10−6 <10−6

Exact 3.650 111 0.0 8.647 794 0.0
(Ea,Eb) (3.6, 3.7) (8.63, 8.65)

n εq1 F ′(εq1 ) εq2 F ′(εq2 )
1 2.498 646 1.991 21 8.501 897 1.996 93
2 2.498 334 1.999 99 8.501 666 2.000 00
3 c 2.000 00 c 2.000 00
Exact 2.498 334 2.0 8.501 666 2.0
(Ea,Eb) (2.48, 2.50) (8.50, 8.52)

aNotations as in Table II.

already proved in Sec. II theoretically, the energy derivative
at the true eigenvalues of H should be zero and, on the other
hand, two at the pole energies. These theoretical predictions
are also confirmed numerically. From this difference of the
derivatives of Fm(E) we can easily classify the solutions into
two parts, the true eigenvalues of H and the pole energies.

As a whole the convergence rates are reasonable in the
cases with the coupling strength x = 0.05, 0.1, and 0.2. Three
steps of the calculations in the modified secant method are
enough for yielding the results with accuracy to six decimal
places. However, the convergence depends strongly on the
choice of the starting energies (Ea,Eb). When the spacing of

two solutions among {Ek} and {εq} is very narrow, we need to
draw graphs accurately enough to find approximate values of
{Ea,Eb} to bracket each of the solutions.

IV. CONCLUDING REMARKS

We have introduced a vertex function called the Ẑ box,
which is an operator defined in a model space and a function
of an energy E. The Ẑ box is constructed in terms of the Q̂

box and its energy derivative originated by Kuo et al. We have
proved that a new expression of the effective interaction can
be derived by replacing the Q̂ box by the Ẑ box in the KK

TABLE IV. Convergence of the solutions obtained with the strength x = 0.2.a

n E1 F ′(E1) E2 F ′(E2)

1 −0.149 272 0.000 08 2.577 187 0.005 35
2 −0.149 586 <10−6 2.579 424 <10−5

3 c <10−6 2.579 425 <10−6

Exact −0.149 586 0.0 2.579 425 0.0
(Ea,Eb) (−0.2, −0.1) (2.5, 2.6)

n E3 F ′(E3) E4 F ′(E4)
1 5.645 253 0.000 03 8.923 645 0.002 44
2 5.645 051 <10−6 8.925 109 <10−5

3 c <10−6 8.925 110 <10−6

Exact 5.645 051 0.0 8.925 110 0.0
(Ea,Eb) (5.6, 5.7) (8.9, 9.0)

n εq1 F ′(εq1 ) εq2 F ′(εq2 )
1 1.993 869 1.998 86 8.007 196 1.999 21
2 1.993 341 2.000 00 8.006 659 2.000 00
3 c 2.000 00 c 2.000 00
Exact 1.993 341 2.0 8.006 659 2.0
(Ea,Eb) (1.9, 2.0) (8.0, 8.1)

aNotations as in Table II.
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method. With the Ẑ box we have also introduced a set of scalar
functions {Fm(E)}. It has been shown that the Ẑ box and the
associated functions {Fm(E)} have the following properties:

(i) The true eigenvalues {Ek} of the original Hamiltonian
H can be given by the roots of a set of equations
{Fm(E) = E}. These equations have the roots, as
additional solutions, at the pole energies {εq} of the
Q̂ box.

(ii) The Ẑ box and the functions {Fm(E)} have no singu-
larities even at the poles of the Q̂ box, and they are
well-behaved functions of E.

(iii) The derivatives of {Fm(E)} at the solutions for E take
two values, i.e., zero at the true eigenvalues {Ek} of H

and two at the pole energies {εq}.
On the basis of the properties (i), (ii), and (iii), we have
proposed an iteration scheme written as E(n+1) = Fm(E(n)).
This iteration always converges and reproduces the true
eigenvalues {Ek} of H . Since the energy derivatives of {Fm(E)}
at the solutions for {Ek} are always zero, this method can be
understood to be equivalent to the Newton-Raphson method
used to solve nonlinear equations. The Newton-Raphson
iteration derives quadratic convergence. Therefore, we can
expect that this new iteration leads to fast convergence. We
have carried out a test calculation and confirmed the quadratic
convergence.

As another method for solving a set of equations {Fm(E) =
E}, we have proposed an noniterative method which we call
the graphical method. The solutions of these equations can be
obtained as the energies at the intersections of the graphs {y =
Fm(E)} and y = E. Using the property (iii) we can classify

the intersections into two parts, i.e., those for the solutions of
the true eigenvalues {Ek} and of the pole energies {εq}. These
graphs make us possible to estimate roughly the positions
of the roots. With approximate solutions obtained from the
graphs we proceed to make more accurate calculations of the
solutions, where we have employed a modified secant method
which is a combined method of the secant and the Newton-
Raphson methods. This method has been shown to provide a
suitable scheme for obtaining accurate results if we start with
approximate energies close to the solutions.

We have made test calculations to assess the graphical
method. We have confirmed numerically that the modified
secant method reproduces successfully all the solutions,
including the true eigenvalues {Ek} of H and the pole energies
{εq}. The theoretical predictions in the property (iii) on the
energy derivatives of {Fm(E)} are also verified numerically.
We wish to note that the graphical method, implemented by
the modified secant method, yields always convergent results,
where we do not need any information on the eigenstates and/or
the eigenvalues of H such as P-space overlaps and/or energy
spacings.

We may conclude that the present approach, the graphical
method with the vertex function Ẑ(E), would be promising
in resolving some of the difficulties in the derivation of the
effective interaction.
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[13] T. T. S. Kuo, F. Krmpotić, K. Suzuki, and R. Okamoto, Nucl.
Phys. A 582, 205 (1995).

[14] S. Y. Lee and K. Suzuki, Phys. Lett. B 91, 173 (1980).
[15] K. Suzuki and S. Y. Lee, Prog. Theor. Phys. 64, 2091 (1980).
[16] R. Okamoto, K. Suzuki, H. Kumagai, and S. Fujii (to be

published in J. Phys.: Conf. Ser.), arXiv:1011.1994 [nucl-th].
[17] Huan Dong, T. T. S. Kuo, and J. W. Holt, arXiv:1011.1487

[nucl-th].
[18] B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).
[19] T. T. S. Kuo, S. Y. Lee, and K. F. Ratcliff, Nucl. Phys. A 176, 65

(1971).
[20] C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).
[21] K. Suzuki, R. Okamoto, P. J. Ellis, and T. T. S. Kuo, Nucl. Phys.

A 567, 570 (1994).
[22] K. Takayanagi (to be published in Nucl. Phys. A).
[23] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,

Numerical Recipes in Fortran (Cambridge University Press,
Cambridge, UK, 1992).

[24] T. Schucan and H. A. Weidenmüller, Ann. Phys. 73, 108 (1972);
76, 483 (1973).

[25] H. M. Hoffmann, S. Y. Lee, J. Richert, and H. A. Weidenmüller,
Phys. Lett. B 45, 421 (1973).

024304-9

http://dx.doi.org/10.1103/RevModPhys.49.777
http://dx.doi.org/10.1016/0370-1573(95)00012-6
http://dx.doi.org/10.1016/0370-1573(95)00012-6
http://dx.doi.org/10.1103/PhysRevLett.84.5728
http://dx.doi.org/10.1103/PhysRevLett.84.5728
http://dx.doi.org/10.1103/PhysRevC.62.054311
http://dx.doi.org/10.1103/PhysRevC.62.054311
http://dx.doi.org/10.1103/PhysRevC.36.804
http://dx.doi.org/10.1103/PhysRevC.36.804
http://dx.doi.org/10.1103/PhysRevC.54.684
http://dx.doi.org/10.1142/S0218301305002734
http://dx.doi.org/10.1142/S0218301305002734
http://dx.doi.org/10.1103/PhysRevB.63.205308
http://dx.doi.org/10.1103/PhysRevB.63.205308
http://arXiv.org/abs/arXiv:1009.4833
http://dx.doi.org/10.1103/PhysRevA.79.012707
http://dx.doi.org/10.1103/PhysRevA.79.012707
http://dx.doi.org/10.1016/0375-9474(74)90184-5
http://dx.doi.org/10.1016/0375-9474(74)90184-5
http://dx.doi.org/10.1016/0375-9474(94)00456-W
http://dx.doi.org/10.1016/0375-9474(94)00456-W
http://dx.doi.org/10.1016/0370-2693(80)90423-2
http://dx.doi.org/10.1143/PTP.64.2091
http://arXiv.org/abs/arXiv:1011.1994
http://arXiv.org/abs/arXiv:1011.1487
http://dx.doi.org/10.1103/RevModPhys.39.771
http://dx.doi.org/10.1016/0375-9474(71)90731-7
http://dx.doi.org/10.1016/0375-9474(71)90731-7
http://dx.doi.org/10.1016/0029-5582(58)90136-6
http://dx.doi.org/10.1016/0003-4916(72)90315-6
http://dx.doi.org/10.1016/0003-4916(73)90044-4
http://dx.doi.org/10.1016/0370-2693(73)90633-3

